A multimodal neuroimaging meta-analysis of functional and structural brain abnormalities in attention-deficit/hyperactivity disorder

Prog Neuropsychopharmacol Biol Psychiatry. 2024 Nov 28:111199. doi: 10.1016/j.pnpbp.2024.111199. Online ahead of print.

Abstract

Background: Numerous neuroimaging studies utilizing resting-state functional imaging and voxel-based morphometry (VBM) have identified variations in distinct brain regions among individuals with attention-deficit/hyperactivity disorder (ADHD). However, the results have been inconsistent.

Methods: A comprehensive voxel-wise meta-analysis was performed on studies employing resting-state functional imaging and gray matter volume (GMV), examining discrepancies between individuals with ADHD and neurotypical controls (NCs). The analysis utilized the Seed-based d Mapping with Permutation of Subject Images software.

Results: A systematic review of the literature identified 21 functional imaging studies (595 ADHD and 564 controls) and 50 GMV studies (1907 ADHD and 1611 controls). In general, individuals with ADHD exhibited increased resting-state functional activity in the right parahippocampal gyrus and bilateral orbitofrontal cortex (OFC), as well as decreased resting-state functional activity in the bilateral cingulate cortex (including the posterior cingulate cortex [PCC], median cingulate cortex [MCC], and anterior cingulate cortex [ACC]). The VBM meta-analysis revealed decreased GMV in the bilateral OFC, right putamen (extending to right superior temporal gyrus [STG]), left inferior frontal gyrus (IFG), right superior frontal gyrus (SFG), ACC, and precentral gyrus among individuals with ADHD.

Conclusions: The multimodal meta-analyses indicated that individuals with ADHD exhibit abnormalities in both function and structure in the bilateral OFC. In addition, a few regions exhibited only functional or only structural abnormalities in ADHD, such as in the limbic, prefrontal, primary sensorimotor regions.

Keywords: Attention deficit hyperactivity disorder; Meta-analysis; Multimodal; Resting-state functional imaging; Voxel-based morphometry.