Single-cell printing technology has arisen as a potent instrument for investigating cell biology and disease pathophysiology. Nonetheless, current single-cell printing methodologies are hindered by restricted throughput, a limited field of view, and diminished efficiency. We present an innovative single-cell printing chip that utilizes thermal inkjet technology for single-cell printing, therefore addressing these constraints. We have accomplished high-throughput, wide-field, and efficient single-cell printing by merging a high-density thermal foam-based inkjet nozzle array on a chip with high-speed cameras and computer vision technologies for optical image capture and single-cell identification training. We have shown the efficacy and adaptability of the printing chip by printing various concentrations of Chinese hamster ovary cells and human embryonic kidney 293 cells. The printing of a single 96-well plate is accomplished in 2-3 min, facilitating one-time loading and uninterrupted multi-plate paving. Our thermal bubble single-cell printing chip serves as a viable platform for high-throughput single-cell analysis applications.
© 2024 Author(s).