Interleukin 15 (IL15) is crucial for fostering the survival and proliferation of nature killer (NK) cells and cytotoxic T lymphocytes (CTLs), playing a pivotal role in tumor control. However, IL15 supplementary therapy encounters challenges such as systemic inflammation and non-specific stimulation of cancer cells. Herein, a nanovesicle termed DoxFILN, comprising a membrane presenting IL15/IL15 receptor α complexes (IL15c) and a core of doxorubicin-loaded ferritin (Dox-Fn) are reported. The DoxFILN significantly enhances the densities and activities of intratumoral CTLs and NK cells. Mechanistically, DoxFILN undergoes deshelling in the acidic tumor microenvironment, releasing Dox-Fn and membrane-bound IL15c. Dox-Fn selectively target transferrin receptors on cancerous cells, facilitating intracellular Dox release and inducing immunogenic cell death. Concurrently, membrane-bound IL15c recognizes and activates IL15 receptor β/γc heterodimers, leading to a remarkable increase in the proliferation and activation of CTLs (16-fold and 28-fold) and NK cells (37-fold and 50-fold). The IL15-displaying nanovesicle introduced here holds promise as a potential platform for immunochemotherapy in the treatment of cancer.
Keywords: CTLs; IL15, immunotherapy; NK cells; nanovesicles.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.