This study presents the design and characterization of a triad metal-organic framework (MOF) system composed of pyrene, porphyrin, and phenyl-C61-butyric acid (PCBA) for efficient energy and electron transfer processes mimicking natural photosynthesis. The triad MOF, synthesized through a mixed-ligand approach followed by postsynthetic modification, demonstrates sequential energy transfer from pyrene to porphyrin, followed by electron transfer to the PCBA acceptor. Time-resolved photoluminescence (TRPL) spectroscopy was employed to investigate the dynamics of energy and charge transfer, revealing fast interligand energy transfer and subsequent charge separation in the MOF structure. The PCBA-functionalized MOF (PCBA@nMLM) exhibited a significantly enhanced photocatalytic performance compared to the nonfunctionalized counterpart, particularly in the selective aerobic oxidation of sulfides to sulfoxides under visible light irradiation. The enhanced photocatalytic activity is attributed to the prolonged charge separation facilitated by the PCBA moieties, as confirmed by electrochemical impedance spectroscopy (EIS) and transient photocurrent measurements. This work highlights the potential of MOF-based systems in artificial photosynthesis and other photocatalytic applications by effectively harnessing solar energy through optimized energy and charge transfer mechanisms.
Keywords: electron transfer; energy transfer; light-harvesting; metal−organic frameworks (MOFs); photocatalysis.