This article investigates the problem of adaptive fixed-time optimal consensus tracking control for nonlinear multiagent systems (MASs) affected by actuator faults and input saturation. To achieve optimal control, reinforcement learning (RL) algorithm which is implemented based on neural network (NN) is employed. Under the actor-critic structure, an innovative simple positive definite function is constructed to obtain the upper bound of the estimation error of the actor-critic NN updating law, which is crucial for analyzing fixed-time stabilization. Furthermore, auxiliary functions and estimation laws are designed to eliminate the coupling effects resulting from actuator faults and input saturation. Meanwhile, a novel event-triggered mechanism (ETM) that incorporates the consensus tracking errors into the threshold is proposed, thereby effectively conserving communication resources. Based on this, a fixed-time event-triggered control scheme grounded in RL is proposed through the integration of the backstepping technique and fixed-time theory. It is demonstrated that the consensus tracking errors converge to a specified range in a fixed time and all signals within the closed-loop systems are bounded. Finally, simulation results are provided to verify the effectiveness of the proposed control strategy.
Keywords: Actuator faults; Event-triggered control; Fixed-time control; Input saturation; Optimal consensus control.
Copyright © 2024. Published by Elsevier Ltd.