Complete quantum control of a stationary quantum bit embedded in a quantum emitter is crucial for photonic quantum information technologies. Recently, the orbital degree of freedom in optically active quantum dots has emerged as a promising candidate. However, the essential ability to perform arbitrary rotations on orbital qubits remains elusive. Here, we demonstrate arbitrary rotation of a hole orbital qubit with direct phase control using picosecond optical pulses. This is achieved by inducing stimulated Raman transitions within Λ systems coupled via radiative Auger processes. This new capability enables direct control of polar and azimuth angles of the Bloch vector without requiring timed precession. Our results establish orbital states in solid-state quantum emitters as a viable resource for applications in high-speed quantum information processing.