FTO-mediated demethylation of MTUS1/ATIP1 promotes tumor progression in head and neck squamous cell carcinoma

BMC Cancer. 2024 Dec 3;24(1):1489. doi: 10.1186/s12885-024-13253-y.

Abstract

Background: Head and neck squamous cell carcinoma (HNSCC) has been recognized as the seventh most prevalent malignant tumor globally. It is a malignant neoplasm that arises from the mucosal epithelium of head and neck region. In our previous research, we have demonstrated that MTUS1/ATIP1 exhibits anti-cancer properties in HNSCC. Nevertheless, the underlying mechanism responsible for the reduction of MTUS1/ATIP1 expression has not been investigated.

Methods: HNSCC and adjacent normal tissues were collected and examined using m6A MeRIP-seq, qRT-PCR, and IHC to investigate the relationship between MTUS1/ATIP1 and FTO. MeRIP-qPCR, m6A dot blot, RNA and protein stability assays, and RNC-qRT-PCR were employed to elucidate the mechanism by which FTO mediates demethylation of MTUS1/ATIP1 in HNSCC. Functional assays, subcutaneous tumorigenesis, and in situ tongue cancer models were conducted to assess the impact of the FTO-MTUS1/ATIP1 pathway on proliferative capacity of HNSCC tumors.

Results: FTO was observed to be markedly upregulated and showed a negative correlation with MTUS1/ATIP1 expression in HNSCC. FTO was responsible for mediating m6A demethylation in the 3'UTR of MTUS1/ATIP1, leading to its degradation. Additionally, silencing MTUS1/ATIP1 successfully reversed the tumor-promoting effects on HNSCC triggered by FTO in in vitro and in vivo.

Conclusions: Our research elucidated the functional importance of FTO-mediated m6A demethylation of MTUS1/ATIP1, suggesting that targeting the FTO-MTUS1/ATIP1 axis could be a prospective novel approach for treating HNSCC.

Keywords: Demethylation; FTO; Head and neck squamous cell carcinoma; MTUS1/ATIP1; N6-methyladenosine.

MeSH terms

  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO* / genetics
  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO* / metabolism
  • Animals
  • Cell Line, Tumor
  • Cell Proliferation
  • Demethylation
  • Disease Progression
  • Female
  • Gene Expression Regulation, Neoplastic
  • Head and Neck Neoplasms* / genetics
  • Head and Neck Neoplasms* / metabolism
  • Head and Neck Neoplasms* / pathology
  • Humans
  • Male
  • Mice
  • Squamous Cell Carcinoma of Head and Neck* / genetics
  • Squamous Cell Carcinoma of Head and Neck* / metabolism
  • Squamous Cell Carcinoma of Head and Neck* / pathology
  • Tumor Suppressor Proteins

Substances

  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO
  • FTO protein, human
  • MTUS1 protein, human
  • Tumor Suppressor Proteins