Agricultural greenhouse gas emission reduction plays an important role in addressing global climate warming. Researching and revealing the spatial and temporal characteristics, as well as the influencing mechanisms of agricultural greenhouse gas emissions, is of great significance for achieving the goals of green and low-carbon development in agriculture. This study examines the agricultural greenhouse gas emissions from 31 provinces (municipalities, autonomous regions) in China from 2000 to 2020. Through the use of geographic detectors, spatial econometric analysis, and other methods, it explores the spatiotemporal evolution characteristics and driving factors of agricultural greenhouse gas emissions. The results indicated the following: ① From 2000 to 2020, agricultural greenhouse gas emissions in China showed a development process of "slow increase - sharp increase - sharp decrease." ② The spatial heterogeneity of agricultural greenhouse gas emissions was significant, forming three high emission areas in space: the central high emission area centered on Henan, the southern high emission area centered on Guangdong, and the southwestern high emission area centered on Sichuan. The center of gravity showed a trend of shifting northward and westward. ③ Rural population, regional gross domestic product, and agricultural output value were the dominant driving factors causing spatial heterogeneity of agricultural greenhouse gas emissions. ④ Agricultural greenhouse gas emissions had spatial spillover effects. When formulating agricultural greenhouse gas reduction targets, it is necessary to adopt a coordinated control strategy among different regions.
Keywords: agricultural greenhouse gas emissions; driving factors; geographical detector; influencing mechanism; spatial and temporal heterogeneity; spatial econometric analysis.