Glycocalyx-induced formation of membrane tubes

bioRxiv [Preprint]. 2024 Nov 28:2024.11.27.625577. doi: 10.1101/2024.11.27.625577.

Abstract

Tubular membrane structures are ubiquitous in cells and in the membranes of intracellular organelles such as the Golgi complex and the endoplasmic reticulum. Tubulation plays essential roles in numerous biological processes, including filopodia growth, trafficking, ion transport, and cellular motility. Understanding the fundamental mechanism of the formation of membrane tubes is thus an important problem in the fields of biology and biophysics. Though extensive studies have shown that tubes can be formed due to localized forces acting on the membrane or by the curvature induced by membrane-bound proteins, little is known about how membrane tubes are induced by glycocalyx, a sugar-rich layer at the cell surface. In this work, we develop a biophysical model that combines polymer physics theory and the Canham-Helfrich membrane theory to investigate how the glycocalyx generates cylindrical tubular protrusions on the cell membrane. Our results show that the glycocalyx alone can induce the formation of tubular membrane structures. This tube formation involves a first-order shape transition without any externally applied force or other curvature-inducing mechanisms. We also find that critical values of glycocalyx grafting density and glycopolymer length are needed to induce the formation of tubular structures. The presence of vertical actin force, line tension, and spontaneous curvature reduces the critical grafting density and length of polymer that triggers the formation of membrane tube, which suggests that the glycocalyx makes tube formation energetically more favorable when combined with an actin force, line tension, and spontaneous curvature.

Significance statement: In many cells, the existence of glycocalyx, a thick layer of polymer meshwork comprising proteins and complex sugar chains coating the outside of the cell membrane, regulates the formation of membrane tubes. Here, we propose a theoretical model that combines polymer physics theory and the Canham-Helfrich membrane theory to study the formation of cylindrical tubular protrusions induced by the glycocalyx. Our findings indicate that glycocalyx plays an important role in the formation of membrane tubes. We find that there exists critical grafting density and length of polymer that triggers the formation of membrane tubes, and the glycocalyx-induced tube formation is facilitated when combined with actin forces, line tension, and spontaneous curvature. Our theoretical model has implications for understanding how biological membranes may form tubular structures.

Publication types

  • Preprint