PC12 cells, derived from a rat pheochromocytoma, were mutagenized and selected in media containing agents known to elevate intracellular concentrations of cyclic AMP (cAMP). More than 40 clones were isolated by selection with cholera toxin or 2-chloroadenosine or both. The variants that were deficient in accumulating cAMP were obtained by using a protocol in which 1 microM 8-bromo-cAMP was included in addition to the agonist. Certain of these variants were partially characterized with respect to the site of altered cAMP metabolism. The profiles of adenylate cyclase activity responsiveness of certain variants to guanosine-5'-(beta, gamma-imido) triphosphate and to forskolin resembled those of UNC and cyc phenotypes of S49 lymphoma cells, which are functionally deficient in the GTP-sensitive coupling protein, Ns. Other variants were characterized by increased cyclic nucleotide phosphodiesterase activity at low substrate concentration. Diverse morphological traits were observed among the variants, but it was not possible to assign them to a particular cAMP phenotype. Two revertants of a PC12 mutant were isolated and observed to have regained a cellular cAMP response to 2-chloroadenosine and to forskolin. It is hoped that these PC12 mutants will have utility for defining cAMP-mediated functions, including any links to the action of nerve growth factor, in cells derived from the neural crest.