Extending previous work with E. coli and mammalian cells in culture, forward-mutation frequencies induced by ethyl methanesulfonate (EMS) were quantitatively compared in Neurospora crassa and Saccharomyces cerevisiae under standardized conditions. Concomitantly, the actual dose to DNA was measured by determining the amount of radioactivity bound to DNA after treatment with tritium-labeled EMS. After exposure to EMS (2.5-50 mM), alkylation levels in N. crassa and S. cerevisiae were similar to those previously determined in E. coli and cultured mammalian cells. Consistently, there was a slightly less than proportional increase of the DNA alkylation level with the exposure concentration of the mutagen. Forward mutagenesis induced in yeast and N. crassa showed exponential kinetics with exponents of 1.5 and 2.6, respectively. These results are similar to those previously reported with E. coli, which differed from the results with cultured mammalian cells, where a linear dose-effect relationship between exposure and genetic effect was observed. These differences may reflect differences in the fate of EMS-induced adducts by cellular DNA repair systems, but are not due to initial differences in DNA alkylation levels. The fate and persistence of specific DNA adducts potentially responsible for pre-mutagenic changes are under investigation.