The erythrocyte membrane is modeled as a two-dimensional viscoelastic continuum that evolves under the application of stress. The present analysis of the erythrocyte membrane is motivated by the recent development of knowledge about its molecular structure. The constitutive equations proposed in the present analysis explain in a consistent manner the data on both the deformation and recovery phases of the micropipette experiment. The rheological equations of the present study are applied in a later section to the analysis of a plane membrane deformation that is quantitatively similar to the tank-treading motion of the erythrocytes in a shear field. The computations yield useful information on how the membrane viscosity becomes a more dominant feature in tank-treading motion. The material constants appearing in the proposed constitutive equations may be useful indications of the biochemical state of the membrane in health and disease.