Sodium-phosphate transporter adaptation to dietary phosphate deprivation in normal and hypophosphatemic mice

Am J Physiol. 1995 Jun;268(6 Pt 1):G917-24. doi: 10.1152/ajpgi.1995.268.6.G917.

Abstract

The X-linked hypophosphatemic (Hyp) mouse is a model for hypophosphatemic vitamin D-resistant rickets and is a homologue of human X-linked hypophosphatemia. The defect in the Hyp mouse appears to be related to decreased renal tubular reabsorption of P(i) via the renal brush-border membrane (Na(+)-P(i)) transporter. Dietary P(i) deprivation upregulates Na(+)-P(i) transport activity in brush-border membrane vesicles (BBMV) isolated from both normal and Hyp mice; however, the molecular mechanisms underlying this phenomenon are not known. The current studies were designed to investigate the effect of P(i) deprivation on the renal Na(+)-P(i) transporter. Low P(i) diet upregulated Na(+)-P(i) transporter activity in isolated BBMV by 2.1-fold in normal and Hyp mice (n = 3, P = 0.01). Low P(i) diet also induced a 1.9 +/- 0.3-fold increase in normal mice and 2.9 +/- 0.4-fold increase in Hyp mice in Na(+)-P(i) transporter message levels (n = 3, P = 0.028). The increase in message level encoding the Na(+)-P(i) transporter stimulated increased Na(+)-dependent P(i) uptake by Xenopus laevis oocytes when poly(A)+ RNA was injected into them from mice on low P(i) diet (approximately 1.67-fold in normal mice and 1.33-fold in Hyp mice). Immunoreactive protein levels increased 2.3 +/- 0.4-fold in normal mice and 8.2 +/- 0.5 in the Hyp mouse kidney cortexes (n = 3, P = 0.0001) in response to dietary P(i) deprivation.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Antibodies
  • Blotting, Western
  • Carrier Proteins / analysis
  • Carrier Proteins / biosynthesis
  • Carrier Proteins / metabolism*
  • Hypophosphatemia / metabolism*
  • Immunohistochemistry
  • Kidney / metabolism*
  • Kidney Cortex / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Mutant Strains
  • Microvilli / metabolism*
  • Molecular Sequence Data
  • Peptides / chemical synthesis
  • Peptides / immunology
  • Phosphates / metabolism
  • Phosphorus, Dietary / pharmacology*
  • Reference Values
  • Rickets / metabolism
  • Sodium-Phosphate Cotransporter Proteins
  • Symporters*

Substances

  • Antibodies
  • Carrier Proteins
  • Peptides
  • Phosphates
  • Phosphorus, Dietary
  • Sodium-Phosphate Cotransporter Proteins
  • Symporters