NFS-60 and FDCP-Mix cells are interleukin-3--dependent multipotent hematopoietic cells that can differentiate in vitro into mature myeloid and erythroid cells. Retrovirus-mediated transfer of the human colony-stimulating factor-1 (CSF-1) receptor gene (c-fms) enabled NFS-60 cells but not FDCP-Mix cells to proliferate in response to CSF-1. The phenotype of NFS-60 cells expressing the human CSF-1 receptor (CSF-1R) grown in CSF-1 did not grossly differ from that of original NFS-60 as assessed by cytochemical and surface markers. Importantly, these cells retained their erythroid potentiality. In contrast, a CSF-1-dependent variant of NFS-60, strongly expressing murine CSF-1R, differentiated into monocyte/macrophages upon CSF-1 stimulation and almost totally lost its erythroid potentiality. We also observed that NFS-60 but not FDCP-Mix cells could grow in response to stem cell factor, (SCF), although both cell lines express relatively high amounts of SCF receptors. This suggests that SCF-R and CSF-1R signalling pathways share at least one component that may be missing or insufficiently expressed in FDCP-Mix cells. Taken together, these results suggest that human CSF-1R can use the SCF-R signalling pathway in murine multipotent cells and thereby favor self-renewal versus differentiation.