The activity of photosystem (PS) I in cucumber leaves was selectively inhibited by weak illumination at chilling temperatures with almost no loss of P-700 content and PSII activity. The sites of inactivation in the reducing side of PSI were determined by EPR and flash photolysis. Measurement by EPR showed the destruction of iron-sulfur centers, FX, FA and FB, in parallel with the loss of quantum yield of electron transfer from diaminodurene to NADP+. Flash photolysis showed the increases in the triplet states of P-700 and antenna pigments, along with the decrease in the electron transfer from P-700 to FA/FB. This indicates the increase in the charge recombination between P-700+ and A0-. It is concluded that weak-light treatment of cucumber leaves at chilling temperature destroys FX, FA and FB and possibly A1. This gives the molecular basis for the mechanism of selective PSI photodamage that was recently reported [Sonoike and Terashima (1994) Planta 194, 287-293].