To characterize the serological response to SIV envelope, induced by vaccination with different envelope immunogens or by SIV infection, plasma samples from 11 cynomolgus macaques infected with simian immunodeficiency virus (SIV) and from 16 macaques vaccinated with three different recombinant envelope proteins were analyzed by (1) ELISA, using a variety of antigens including overlapping peptides encompassing the entire sequence of the envelope protein of SIV, and (2) competition assays, using neutralizing monoclonal antibodies to SIV gp120. Seven regions of SIV envelope were predicted to be antigenic. Peptides representing four of these, in the second and third variable regions (V2 and V3) and the fourth constant (C4) region of gp120 and the Gnann region of gp41, were recognized by the majority of sera from infected and vaccinated animals. Additional antigenic regions were identified in the first and fourth variable domains (V1 and V4) and the carboxy terminus (C5) of gp120 and in three additional regions of gp41. Most infected and vaccinated animals made antibodies that competed with the binding of the three conformational MAbs. Among the vaccinated groups, antibodies induced by vaccination with precursor glycoproteins (gp140 or gp160) recognized several additional gp120 epitopes when compared with antibodies induced by external glycoprotein gp130. Sera from infected animals showed a more restricted gp120 response (17 of 46 peptides recognized) compared to animals vaccinated with precursor glycoproteins (31 peptides recognized). The converse was true for antibodies to gp41. Sera from animals vaccinated with recombinant gp140, produced in insect cells, were the only group that failed to compete with the binding of conformational MAbs. Finally, the development of antibodies to specific epitopes of gp120 and gp41 revealed differences between long-term survivors and nonsurvivors, implying that responses to specific epitopes may be important in conferring resistance to disease progression.