We have previously demonstrated that Borna disease virus (BDV) has a negative nonsegmented single-stranded (NNS) RNA genome that replicates in the nucleus of infected cells. Here we report for the first time the cloning and complete sequence of the BDV genome. Our results revealed that BDV has a genomic organization similar to that of other members of the Mononegavirales order. We have identified five main open reading frames (ORFs). The largest ORF, V, is located closest to the 5' end in the BDV genome and, on the basis of strong homology with other NNS-RNA virus polymerases, is a member of the L-protein family. The intercistronic regions vary in length and nucleotide composition and contain putative transcriptional start and stop signals. BDV untranslated 3' and 5' RNA sequences resemble those of other NNS-RNA viruses. Using a set of overlapping probes across the BDV genome, we identified nine in vivo synthesized species of polyadenylated subgenomic RNAs complementary to the negative-strand RNA genome, including monocistronic transcripts corresponding to ORFs I, II, and IV, as well as six polycistronic polyadenylated BDV RNAs. Interestingly, although ORFs III and V were detected within polycistronic transcripts, their corresponding monocistronic transcripts were not detected. Our data indicate that BDV is a member of the Mononegavirales, specially related to the family Rhabdoviridae. However, in contrast to the rest of the NNS-RNA animal viruses, BDV replication and transcription occur in the nucleus of infected cells. These findings suggest a possible relationship between BDV and the plant rhabdoviruses, which also replicate and transcribe in the nucleus.