The recent discovery of 8-azido-ATP binding sites on the platelet fibrinogen receptor glycoprotein complex GPIIb-IIIa suggests that extracellular ATP may directly modulate function of GPIIb-IIIa. In this study we investigated the effect of ATP on ligand binding to GPIIb-IIIa. Fibrinogen-mediated aggregation of washed platelets was inhibited by ATP and 8-azido-ATP in a dose-dependent manner, independent of the agonist (thrombin, collagen, epinephrine, phorbol 12-myristate 13-acetate) used to induce platelet activation. In addition, 8-azido-ATP and ATP inhibited binding of 125I-labeled fibrinogen to thrombin- and phorbol ester-activated platelets. Interaction of nonstimulated platelets with solid-phase fibrinogen was also reduced by 8-azido-ATP and ATP. Moreover, fibrinogen mimetic peptide-induced conformational change of GPIIb-IIIa on resting platelets was reduced in the presence of both nucleotides. Finally, photoincorporation of 8-azido-[gamma-32P]ATP into GPIIb-IIIa was suppressed by GRGDSP but not by the biologically inactive GRGESP peptide. Thus interaction of ATP with 8-azido-ATP binding sites present on GPIIb-IIIa modulate receptor function, which may play a role in regulation of in vivo platelet aggregation.