In this report we show that NIH-3T3 mouse fibroblasts stably expressing the human multidrug transporter (MDR1 or P-glycoprotein), in contrast to the control NIH-3T3 cells, actively extrude the hydrophobic acetoxymethyl ester (AM) derivatives used for cellular loading of various fluorescent calcium and pH indicators. This dye extrusion is blocked by competing substrates and inhibitors of the multidrug transporters, e.g. by verapamil, vincristine, sodium orthovanadate, oligomycin, and a monoclonal anti-MDR1 antibody. The hydrophilic free acid forms of the indicators are not exported by MDR1. We also demonstrate that in isolated cell membranes the MDR1-ATPase, similar to that by known substrates of the transporter, is stimulated by the AM derivatives of fluorescent dyes whereas the free acid forms of the dyes are without effect. Since (i) the AM derivatives of the fluorescent indicators rapidly permeate the cell membrane and are readily cleaved by high activity and large capacity cytoplasmic esterases and (ii) the free acid forms are not substrates for export by MDR1, the observations above suggest that dye extrusion by MDR1 may occur without a cytoplasmic appearance of the AM compounds. These data also call attention to the possible interaction of widely used hydrophobic fluorescent indicators with MDR1 and offer an efficient detection of MDR1-expressing tumor cells as well as a screening method for examining drug interactions with the multidrug transporter.