Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells

Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3201-4. doi: 10.1073/pnas.91.8.3201.

Abstract

Electrically conducting polymers are novel in that their surface properties, including charge density and wettability, can be reversibly changed with an applied electrical potential. Such properties might render conducting polymers unique for biological applications. However, the majority of research on conducting polymers has been carried out under nonbiological conditions. We synthesized optically transparent polypyrrole thin films and studied them in environments suitable for protein adsorption and mammalian cell culture. In vitro studies demonstrated that extracellular matrix molecules, such as fibronectin, adsorb efficiently onto polypyrrole thin films and support cell attachment under serum-free conditions. When aortic endothelial cells were cultured on fibronectin-coated polypyrrole (oxidized) in either chemically defined medium or the presence of serum, cells spread normally and synthesized DNA. In contrast, when the polymer was switched to its neutral state by applying an electrical potential, both cell extension and DNA synthesis were inhibited without affecting cell viability. Application of a similar electrical potential to cells cultured on indium tin oxide surfaces had no effect on cell shape or function. These data suggest that electrically conducting polymers may represent a type of culture substrate which could provide a noninvasive means to control the shape and function of adherent cells, independent of any medium alteration.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cattle
  • Cell Division*
  • Cell Size*
  • Electrophysiology
  • Endothelium, Vascular / cytology*
  • Polymers
  • Pyrroles / chemistry*
  • Spectrophotometry, Ultraviolet

Substances

  • Polymers
  • Pyrroles