c-jun inhibits transcriptional activation by the insulin enhancer, and the insulin control element is the target of control

Mol Cell Biol. 1994 Jan;14(1):655-62. doi: 10.1128/mcb.14.1.655-662.1994.

Abstract

Selective transcription of the insulin gene in pancreatic beta cells is regulated by its enhancer, located between nucleotides -340 and -91 relative to the transcription start site. One of the principal control elements within the enhancer is found between nucleotides -100 and -91 (GCCATCTGCT, referred to as the insulin control element [ICE]) and is regulated by both positive- and negative-acting transcription factors in the helix-loop-helix (HLH) family. It was previously shown that the c-jun proto-oncogene can repress insulin gene transcription. We have found that c-jun inhibits ICE-stimulated transcription. Inhibition of ICE-directed transcription is mediated by sequences within the carboxy-terminal region of the protein. These c-jun sequences span an activation domain and the basic leucine zipper DNA binding-dimerization region of the protein. Both regions of c-jun are conserved within the other members of the jun family: junB and junD. These proteins also suppress ICE-mediated transcription. The jun proteins do not appear to inhibit insulin gene transcription by binding directly to the ICE. c-jun and junB also block the trans-activation potential of two skeletal muscle-specific HLH proteins, MyoD and myogenin. These results suggests that the jun proteins may be common transcription control factors used in skeletal muscle and pancreatic beta cells to regulate HLH-mediated activity. We discuss the possible significance of these observations to insulin gene transcription in pancreatic beta cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Binding Sites / genetics
  • Cell Line
  • DNA / genetics
  • Enhancer Elements, Genetic*
  • Genes, jun*
  • Helix-Loop-Helix Motifs / genetics
  • Humans
  • Insulin / genetics*
  • Islets of Langerhans / metabolism
  • Molecular Sequence Data
  • Proto-Oncogene Mas
  • Proto-Oncogene Proteins c-jun / genetics
  • Rabbits
  • Rats
  • Transcription, Genetic
  • Transcriptional Activation*

Substances

  • Insulin
  • MAS1 protein, human
  • Proto-Oncogene Mas
  • Proto-Oncogene Proteins c-jun
  • DNA