Methods for scanning electron microscopy (SEM) of chromosomes have been developed in the last two decades. Technical limitations in the study of human chromosomes, however, have hindered the routine use of SEM in clinical and experimental human cytogenetics. We compared different methodologies, including metal impregnation, air drying and specimen coating. SEM preparation of human chromosomes in which osmium impregnation is mediated by tannic acid, yielded more reproducible results when compared with osmium impregnation protocols previously described. The level of osmium impregnation was systematically evaluated by imaging chromosomes in the backscattering mode. Critical point drying and a light gold-palladium coating were essential for appropriate secondary electron imaging of chromosomes. With this method, and in a preliminary quantitative analysis, we show that our SEM technique is more sensitive than light microscopy for the detection of aphidicolin-induced fragile sites. This technical approach is useful for chromosomal studies requiring resolution higher than that obtained by light microscopy. Also, it allows the use of clinical and archival chromosomal samples prepared by routine cytogenetic techniques.