Cell shrinkage stimulates bradykinin-induced cell membrane potential oscillations in NIH 3T3 fibroblasts expressing the ras-oncogene

Pflugers Arch. 1993 May;423(3-4):221-4. doi: 10.1007/BF00374398.

Abstract

In NIH 3T3 fibroblasts expressing the Ha-ras oncogene (+ ras) bradykinin leads to sustained oscillations of cell membrane potential due to oscillations of intracellular Ca2+ with subsequent activation of Ca(2+)-sensitive K+ channels. In cells not expressing the oncogene (-ras), bradykinin leads only to a single transient hyperpolarization of the cell membrane. The present study has been performed to elucidate the possible interaction of cell volume, intracellular pH and bradykinin-induced oscillations of the cell membrane potential. Bradykinin leads to cell shrinkage and intracellular alkalinization of both + ras cells and -ras cells. Inhibition of Na+/H+ exchanger by HOE 694 abolishes the bradykinin-induced alkalinization but does not significantly interfere with the bradykinin-induced oscillations of cell membrane potential. In contrast, prevention of bradykinin-induced cell shrinkage by simultaneous reduction of extracellular osmolarity blunts the oscillations. Thus, cell shrinkage stimulates bradykinin-induced oscillations of cell membrane potential. On the other hand, cell shrinkage alone does not elicit oscillations unless, in addition, Ca2+ entry is stimulated by ionomycin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells
  • Animals
  • Bradykinin / pharmacology*
  • Calcium / metabolism
  • Cell Membrane / physiology
  • Cell Size / drug effects*
  • Gene Expression*
  • Genes, ras*
  • Hydrogen-Ion Concentration
  • Membrane Potentials / drug effects*
  • Mice
  • Osmolar Concentration
  • Sodium Chloride / pharmacology

Substances

  • Sodium Chloride
  • Bradykinin
  • Calcium