Melatonin binding sites were characterized in rat spleen crude membranes. The specific binding of 2-[125I]iodomelatonin by spleen crude membranes fulfills all the criteria for binding to a receptor site. Thus, binding was dependent on time and temperature, stable, specific, and increased under constant light exposure and after pinealectomy. In competition studies, the specific binding of 2-[125I]iodomelatonin to spleen crude membranes was inhibited by increasing concentrations of native melatonin. Scatchard analysis showed that the data were compatible with the existence of two classes of binding sites: a high affinity site with a Kd of 0.53 nM and a binding capacity of 2.52 pM, and a low-affinity site with a Kd of 374 nM and binding capacity of 820 pM. Moreover, binding of 2-[125I]iodomelatonin exhibited day-night variations with the highest binding observed late during the light period, and the lowest binding was observed late at night. However, binding of 2-[125I]iodomelatonin to membranes remained high when animals were kept under light exposure at night. Results support the hypothesis of a regulatory role of melatonin on the immune system in which melatonin downregulates its own binding site.