Structure-activity relationships are presented for some representative compounds from a novel series of potent inhibitors of lipid peroxidation. The compounds are indenoindole derivatives with oxidation potentials in organic solvents of between 0.2 and 1.5 V. Two of these compounds, cis-5,5a,6,10b-tetrahydro-9-methoxy-7-methylindeno[2,1-b]indole (H 290/51) with an oxidation potential of 0.32 V and cis-4b,5,9b,10- tetrahydro-8-methoxy-6-methylindeno[1,2-b]indole (H 290/30) with an oxidation potential of 0.30 V, have been tested more extensively and compared with reference compounds in several pharmacological models of lipid peroxidation. The inhibitory potencies (pIC50) of the compounds in respect to Fe/Ascorbate-induced production of thiobarbituric acid-reactive substances (TBARS) in a suspension of purified soybean lecithin were calculated. These data are 8.2 for H 290/51; 8.0 for H 290/30; 5.6 for vitamin E; and 6.6 for butylated hydroxytoluene (BHT). In isolated rat renal tissue subjected to hypoxia and reoxygenation, the potency for inhibition of TBARS formation is 6.9 for H 290/51, 6.9 for H 290/30, and <5 for vitamin E. In oxidative modification of low-density lipoproteins (LDL) induced by mouse peritoneal macrophages, the corresponding pIC50 values for TBARS inhibition for each compound are: 8.7, 8.3, <5, and 6.9, respectively. It is concluded that the synthetic indenoindoles are potent antioxidants. The results suggest that indenoindoles such as H 290/51 and H 290/30 could be useful as therapeutic agents in pathophysiological situations where lipid peroxidation plays an important role.