Brain iron is a major contributor to magnetic resonance imaging (MRI) contrast in normal gray matter, and its role in the pathogenesis of different neurological disorders has also become apparent. Non-heme brain iron is present in the brain mainly in the form of ferritin. The unique magnetic properties of ferritin determine different signal changes on both T1- and T2-weighted images, and the T2 relaxation rates have a linear dependence on applied field strength. This finding is typical for ferric oxyhydroxide cores. The resulting T2-shortening also depends on echo-spacing used in the imaging sequence as well as on the water diffusion coefficient and the size of the ferritin cluster. Quantitation of non-heme brain iron by MRI aids in the diagnosis and monitoring of different neurological diseases.