Biological and genetic variability is a prominent feature of human immunodeficiency virus (HIV) strains, especially in tropism, syncytium formation, and replicative capacity. To determine whether there were variable host cell effects on HIV replication in monocytes, three different strains of low-passage-number monocytotropic blood isolates of HIV and the laboratory-adapted strain Ba-L were inoculated into panels of adherent monocytes drawn from 44 different donors, and peak extracellular HIV p24 antigen titers were compared. The clinical HIV strains showed patterns of either moderate or low-level replication in most donor monocytes (20 to 4,000 pg/ml). However, within this range there was marked variation in peak titers in most donors. HIV type 1 Ba-L replicated in all donor monocytes to much higher levels with less variability (30 to 40 ng/ml). Furthermore, replication of 21 clinical blood-derived strains of HIV in blood monocytes and monocyte-derived macrophages (MDM) from pairs of identical twins and age-matched unrelated donors (URD) of the same sex were compared. In all of the seven pairs of identical twins, the kinetics of replication (measured by extracellular HIV p24 antigen) of panels of four clinical HIV type 1 isolates in monocytes were similar within pairs. However, marked and significant differences in kinetics of HIV production occurred within 10 of the 12 unrelated donor pairs (P = 0.0007). The remaining two URD pairs showed similar kinetic patterns, but only one pair had the same HLA-DR genotype. Similar results were observed with monocytes/MDMs obtained from a second bleed of the same donor. Hence, discordant patterns of HIV replication kinetics between URD monocyte pairs contrasted with concordant patterns in identical twin monocytes. These data strongly suggest a host cell genetic effect on productive viral replication in monocytes and MDMs. So far, no consistent genetic linkage of HIV replication pattern with HLA-DR genotype has been observed.