Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with brain anomalies. After our initial mapping of the FCMD locus to chromosome 9q31-33, we have further defined the locus within a approximately 5-cM region between D9S127 and D9S2111 and have found linkage disequilibrium between FCMD and D9S306 in this candidate region on 9q31. The high prevalence of FCMD among the Japanese, who are a relatively isolated population, provides an opportunity to utilize linkage-disequilibrium mapping. We developed three new microsatellites, near D9S306, from the FCMD YAC contig, determined their positions on YACs, and performed linkage-disequilibrium mapping with these markers and other newly published loci. The maximum value of p(excess), which represents the strength of linkage disequilibrium, was obtained at D9S2107; and this value showed a relatively steady rise and fall across the region that is likely to contain FCMD. Distances between FCMD and each marker were presumed to be approximately 1 Mb, approximately 350 kb, approximately 140 kb, approximately 20 kb, approximately 280 kb, approximately 450 kb, and approximately 740 kb for D9S306, A107XF9, D9S2105, D9S2107, D9S172, D9S299, and D9S2109, respectively. Haplotype analysis using the three closest markers D9S2105, D9S2107, and D9S172 indicated that most FCMD-bearing chromosomes are derived from a single ancestral founder and suggested that these markers can be used for the diagnosis of sporadic FCMD. Thus, the FCMD gene is most likely to lie within a region of <100 kb containing D9S2107.