In mammals, the organic matrix of developing enamel is dominated by amelogenins. To investigate the expression of proteins secreted into the developing enamel matrix, we have constructed a porcine enamel organ epithelia-specific cDNA library. The amelogenin fraction of the cDNA library was characterized by the cloning of amelogenin-specific polymerase chain-reaction (PCR) amplification products, 5' and 3' rapid amplification of cDNA ends (RACE), and by helper phage rescue of unamplified clones. Clones were characterized that encode porcine amelogenin isoforms 173, 157, 56, 41, and 40 amino acids in length. The structure of the porcine amelogenin gene differs from that of any of those yet described. There are two homologous but distinct exons 1, 2, and 7. One of the two exon 7s can vary in length depending upon the selection of either of two polyadenylation signal/cleavage sites. As a rule, a given exon 1 always pairs with the same exon 2 but can be associated with either exon 7. Despite significant sequence divergence within these exons, no differences are observed in exons 3, 5, and 6. We interpret these findings as evidence of a single amelogenin gene expressed from two promoters; however, the results do not exclude the existence of a second amelogenin gene. The variability generated through the use of alternate promoters and exon 7s primarily affects the non-coding regions of the message. A given amelogenin isoform expressed from the two promoters displays four amino acid differences within the signal peptide, while the secreted proteins are identical. Similarly, the alternative use of exon 7 does not alter the structure of the protein products. The pattern of RNA splicing of amelogenin pre-mRNAs is different for the transcripts expressed from the two promoters. The 173- and the 56-residue amelogenins can be expressed from either promoter, while the 157-residue amelogenin is generated by only one of the two promoters.