The relative location, binding behaviour and the solvent relaxation behaviour of the polarity sensitive membrane probes 6-propionyl-2-(dimethylamino)naphthalene and 6-palmitoyl-2-[[trimethylammoniumethyl]methylamino]naphthalene chloride in vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine or egg yolk lecithin have been compared using steady-state and time-resolved fluorescence as well as high resolution NMR measurements. The reconstructed time-resolved emission spectra show unambiguously that the observed spectral shifts in vesicle systems have to be assigned to time-dependent solvent relaxation processes rather than to a probe relocation mechanism. All fluorescence as well as the NMR relaxation data suggest a deeper localization of Patman in the membrane, sensing a less polar and/or more restricted probe environment.