The aim of this study was the evaluation of the diagnostic potentials of transesophageal 3D- echocardiography in the determination of mitral valve stenosis. 54 patients were investigated by transthoracic and multiplane transesophageal echocardiography. In 41 patients cardiac catheterization was performed. 3D- echocardiographic data acquisition was performed by automatic transducer rotation at 2 degree increments over a span of 180 degrees. The transesophageal probe was linked to an ultrasound unit and to a 3D- workstation capable of ECG- and respiration gated data acquisition, postprocessing and 2D/3D image reconstruction. The mitral valve was visualized in sequential cross-sectional planes out of the 3D data set. The spatial position of the planes was indicated in a reference image. In the cross-sectional plane with the narrowest part of the leaflets the orifice area was measured by planimetry. For topographic information a 3D view down from the top of the left atrium was reconstructed. Measurements were compared to conventional transthoracic planimetry, to Doppler-echocardiographic pressure half time and to invasive data. The mean difference to transthoracic planimetry, pressure half time and to invasive measurements were 0.3 +/- 0.1 cm2, 0.2 +/- 0.1 cm2 and 0.1 +/- 0.1 cm2, respectively. Remarkable differences between the 3D- echocardiographic and the 2D- or Doppler- echocardiographic methods were observed in patients with severe calcification or aortic regurgitation. In 22% of the patients the 3D data set was not of diagnostic quality. New diagnostic information from a 3D view of the mitral valve could be obtained in 69% of the patients. Thus, although image quality is limited, 3D- echocardiography provides new topographic information in mitral valve stenosis. It allows the use of a new quantitative method, by which image plane positioning errors and flow-dependent calculation is avoided.