TNF-alpha-mediated expression of membrane-type matrix metalloproteinase in rheumatoid synovial fibroblasts

Immunology. 1996 Dec;89(4):553-7. doi: 10.1046/j.1365-2567.1996.d01-789.x.

Abstract

Degradation of the extracellular matrix plays an important role in rheumatoid articular destruction. Rheumatoid synovial fibroblasts secrete a large amount of matrix-degrading metalloproteinases (MMPs), which initiate tissue damage by proteolytic degradation of collagens and proteoglycans. Cytokines, such as interleukin-1 alpha, -1 beta or tumour necrosis factor (TNF)-alpha, are potent inducers of MMPs in rheumatoid synovial fibroblasts, MMPs are synthesized and secreted as latent pro-enzymes and their activation is achieved by proteolytic cleavage or the propeptide domain at the N-terminus of the molecule. Thus, the interaction of the pro-enzymes with specific activators determines the enzymatic activity in the extracellular space. In the present study, we identified a novel mechanism for the activation of pro-MMP-2, which can be achieved through the interaction of the inflammatory cytokine, TNF-alpha, with synovial fibroblasts. Although MMP-2 is constitutively secreted by synovial fibroblasts as a pro-enzyme, stimulation of fibroblasts by TNF-alpha-induced secretion of MMP-2 in an active form. In support of this result, TNF-alpha stimulation-induced membrane-type matrix metalloproteinase (MT-MMP), a newly identified MMP-2-specific activator on synovial fibroblasts. Cycloheximide analysis demonstrated that protein synthesis may be required for TNF-alpha-mediated MT-MMP expression on synovial fibroblasts. Our results suggest that TNF-alpha induces MMP-2 activation in part by up-regulating MT-MMP expression, thus representing a new mechanism for cytokine-mediated articular destruction in rheumatoid arthritis (RA).

MeSH terms

  • Arthritis, Rheumatoid / immunology*
  • Arthritis, Rheumatoid / metabolism
  • Cell Culture Techniques
  • Electrophoresis, Polyacrylamide Gel
  • Extracellular Matrix / drug effects
  • Extracellular Matrix / metabolism
  • Female
  • Fibroblasts / drug effects
  • Fibroblasts / metabolism
  • Gelatinases / metabolism
  • Humans
  • Immunoblotting
  • Male
  • Matrix Metalloproteinase 2
  • Matrix Metalloproteinases, Membrane-Associated
  • Metalloendopeptidases / metabolism*
  • Middle Aged
  • Stimulation, Chemical
  • Synovial Membrane / immunology*
  • Synovial Membrane / metabolism
  • Tumor Necrosis Factor-alpha / pharmacology*

Substances

  • Tumor Necrosis Factor-alpha
  • Gelatinases
  • Matrix Metalloproteinases, Membrane-Associated
  • Metalloendopeptidases
  • Matrix Metalloproteinase 2