Borna disease virus (BDV) is a nonsegmented negative-stranded (NNS) RNA virus, prototype of a new taxon in the Mononegavirales order. BDV causes neurologic disease manifested by behavioral abnormalities in several animal species, and evidence suggests that it may be a human pathogen. To improve our knowledge about the biology of this novel virus, we have identified and characterized the product of BDV open reading frame IV (BVp56). Based on sequence features, BVp56 encodes a virus surface glycoprotein. Glycoproteins play essential roles in the biology of NNS RNA viruses. Expression of BVp56 resulted in the generation of two polypeptides with molecular masses of about 84 and 43 kDa (GP-84 and GP-43). GP-84 and GP-43 likely correspond to the full-length BVp56 gene and to its C terminus, respectively. Endoglycosidase studies demonstrated that both products were glycosylated and that this process was required for the stabilization of newly synthesized products. Moreover, our results suggested that GP-43 is generated by cleavage of GP-84 by a cellular protease. Subcellular localization studies demonstrated that GP-84 accumulates in the ER, whereas GP-43 reaches the cell surface. Both BVp56 products were found to be associated with infectious virions, and antibodies to BVp56 had neutralizing activity. Our findings suggest that BVp56 exhibits a novel form of processing for an animal NNS RNA virus surface glycoprotein, which might influence the assembly and budding of BDV.