We analyze the electrostatic and hydrodynamic properties of a nuclease from the pathogenic gram-negative bacterium Serratia marcescens using finite-difference Poisson-Boltzmann methods for electrostatic calculations and a bead-model approach for diffusion coefficient calculations. Electrostatic properties are analyzed for the enzyme in monomeric and dimeric forms and also in the context of DNA binding by the nuclease. Our preliminary results show that binding of a double-stranded DNA dodecamer by nuclease causes an overall shift in the charge of the protein by approximately three units of elementary charge per monomer, resulting in a positively charged protein at physiologic pH. In these calculations, the free enzyme was found to have a negative (-1 e) charge per monomer at pH 7. The most dramatic shift in pKa involves His 89 whose pKa increases by three pH units upon DNA binding. This shift leads to a protonated residue at pH 7, in contrast to the unprotonated form in the free enzyme. DNA binding also leads to a decrease in the energetic distances between the most stable protonation states of the enzyme. Dimerization has no significant effect on the electrostatic properties of each of the monomers for both free enzyme and that bound to DNA. Results of hydrodynamic calculations are consistent with the dimeric form of the enzyme in solution. The computed translational diffusion coefficient for the dimer model of the enzyme is in very good agreement with measurements from light scattering experiments. Preliminary electrooptical calculations indicate that the dimer should possess a large dipole moment (approximately 600 Debye units) as well as substantial optical anisotropy (limiting reduced linear electric dichroism of about 0.3). Therefore, this system may serve as a good model for investigation of electric and hydrodynamic properties by relaxation electrooptical experiments.