We report the isolation and characterization of a chicken gene, GSX, containing a homeobox similar to that of the goosecoid gene. The structure of the GSX gene and the deduced GSX protein are highly related to the previously described goosecoid gene. The two homeodomains are 74% identical. In the first few hours of chick embryogenesis, the expression pattern of GSX is similar to GSC, in the posterior margin of the embryo and the young primitive streak. Later during gastrulation, expression of the two genes segregate. GSC is expressed in the anterior part of the primitive streak, then in the node, and finally in the pre-chordal plate. GSX is expressed in the primitive streak excluding the node, and then demarcating the early neural plate around the anterior streak and overlying the pre-chordal plate. We demonstrate that the GSX-positive part of the primitive streak induces gastrulation, while the GSC-expressing part induces neurulation. After full extension of the streak, the fate of cells now characterized by GSX is to undergo neurulation, while those expressing GSC undergo gastrulation. We discuss the effect of a duplicated basic goosecoid identity for the generation of a chordate nervous system in ontogeny and phylogeny.