Signal transduction in gastrointestinal smooth muscle

Cell Signal. 1997 May-Jun;9(3-4):269-76. doi: 10.1016/s0898-6568(96)00180-5.

Abstract

Signal transduction in gastric and intestinal smooth muscle is mediated by receptors coupled via distinct G proteins to various effector enzymes, including PI-specific PLC-beta 1 and PLC-beta 3, and phosphatidylcholine (PC)-specific PLC, PLD and PLA2. Activation of these enzymes is different in circular and longitudinal muscle cells, generating Ca(2+)-mobilizing (IP3, AA, cADPR) and other (DAG) messengers responsible for the initial and sustained phases of contraction, respectively. IP3-dependent Ca2+ release occurs only in circular muscle. Ca2+ mobilization in longitudinal muscle involves a cascade initiated by agonist-induced transient activation of PLA2 and formation of AA, AA-dependent depolarization of the plasma membrane and opening of voltage-sensitive Ca2+ channels. The influx of Ca2+ induces Ca2+ release by activating sarcoplasmic ryanodine receptor/Ca2+ channel and stimulates cADPR formation which enhances Ca(2+)-induced Ca2+ release. The initial [Ca2+]i transient in both muscle cell types results in Ca2+/calmodulin-dependent activation of MLC kinase, phosphorylation of MLC20 and interaction of actin and myosin. The sustained phase is mediated by a Ca(2+)-independent isoform of PKC, PKC-epsilon DAG for this process is generated by PLC- and PLD-mediated hydrolysis of PC. Relaxation is mediated by cAMP-and/or cGMP-dependent protein kinase which inhibit the initial [Ca2+]i transient and reduce the sensitivity of MLC kinase to [Ca2+]i. Relaxation induced by the main neurotransmitters, VIP and PACAP, involves two cascades, one of which reflects activation of adenylyl cyclase. A distinct cascade involves G-protein-dependent stimulation of Ca2+ influx leading to Ca2+/calmodulin-dependent activation of a constitutive eNOS in muscle cells; the generation of NO activates soluble guanylyl cyclase. The resultant activation of PKA and PKG is jointly responsible for muscle relaxation.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • GTP-Binding Proteins / metabolism*
  • Gastric Mucosa / metabolism*
  • Humans
  • Intestinal Mucosa / metabolism*
  • Muscle Contraction
  • Muscle Relaxation
  • Muscle, Smooth / metabolism*
  • Signal Transduction*

Substances

  • GTP-Binding Proteins