Development of distinct CD4+ T cell cytokine phenotypes may be conditioned by the anatomic site in which activation occurs. A double-label in situ hybridization technique was used to characterize co-expression of cytokine mRNA in antigen-specific responses of Peyer's patch (PP), lamina propria (LP), and splenic (SP) CD4+ T cells isolated from alpha beta T cell receptor-transgenic mice. Interleukin (IL)-2 was the dominant cytokine expressed by antigen-stimulated PP and SP populations, though it was expressed by a minority of the activated T cells. Cells that expressed interferon (IFN)-gamma were less frequent, and IL-4, IL-5, and IL-10 were infrequent. In contrast, cells that expressed IFN-gamma or IL-10 were most frequent in the LP population, with lower frequencies of IL-2, and few IL-4- and IL-5-positive cells. Co-expression of two cytokines by the same cell was the exception, regardless of the anatomic site from which the T cells were isolated. The surface phenotype of transgene-positive T cells isolated from each anatomic site was distinct, despite the absence of in vivo exposure to antigen for which the transgenic T cell receptor is specific. These data suggest that the cytokine responses of CD4+ T cells may be conditioned by the microenvironment, independently of specific antigen, and that the LP CD4+ T population has a distinct cytokine expression pattern with counter-regulatory properties that may be important for homeostasis in mucosal immune tissues.