We examined the use of enterobacterial repetitive intergenic consensus (ERIC) sequences in PCR on the DNAs of various bacteria, bacteriophage, invertebrates, fungi, plants and vertebrates and have shown that complex ERIC-PCR patterns can be readily produced from all of these target organisms. A range of annealing temperatures was tested, from 52 degrees C (the commonly used annealing temperature) to 66 degrees C (the approximate Tm of ERIC primers). At the higher temperatures, most bands failed to amplify, the exception being a subset of bands from enterobacterial targets. It was concluded that ERIC-PCR does not necessarily direct amplification from genuine ERIC sequences.