Inhibition of parvovirus minute virus of mice replication by a peptide involved in the oligomerization of nonstructural protein NS1

J Virol. 1997 Oct;71(10):7393-403. doi: 10.1128/JVI.71.10.7393-7403.1997.

Abstract

The large nonstructural protein NS1 of the minute virus of mice and other parvoviruses is involved in essential steps of the viral life cycle, such as DNA replication and transcriptional regulation, and is a major contributor to the toxic effect on host cells. Various biochemical functions, such as ATP binding, ATPase, site-specific DNA binding and nicking, and helicase activities, have been assigned to NS1. Homo-oligomerization is a prerequisite for a number of proteins to be fully functional. In particular, helicases generally act as homo-oligomers. Indirect evidence of NS1 self-association has been recently obtained by a nuclear cotransport assay (J. P. Nüesch and P. Tattersall, Virology 196:637-651, 1993). In order to demonstrate the oligomerizing property of NS1 in a direct way and localize the protein region(s) involved, the yeast two-hybrid system was used in combination with deletion mutagenesis across the whole NS1 molecule, followed by high-resolution mapping of the homo-oligomerization domain by a peptide enzyme-linked immunosorbent assay method. This study led to the identification of a distinct NS1 peptide that contains a bipartite domain involved in NS1 oligomerization. Furthermore, this isolated peptide was found to act as a specific competitive inhibitor and suppress NS1 helicase activity in vitro and parvovirus DNA replication in vivo, arguing for the involvement of NS1 oligomerization in these processes. Our results point to drug targeting of oligomerization motifs of viral regulatory proteins as a potentially useful antiviral strategy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • DNA Helicases / chemistry
  • DNA Helicases / metabolism*
  • DNA Replication*
  • DNA-Binding Proteins
  • Fungal Proteins / biosynthesis
  • Macromolecular Substances
  • Mice
  • Minute Virus of Mice / physiology*
  • Molecular Sequence Data
  • Peptide Fragments / chemistry
  • Peptide Fragments / metabolism
  • Peptide Fragments / pharmacology*
  • Peptide Mapping
  • Recombinant Fusion Proteins / biosynthesis
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins*
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Transcription Factors*
  • Viral Nonstructural Proteins / biosynthesis
  • Viral Nonstructural Proteins / chemistry*
  • Viral Nonstructural Proteins / metabolism*
  • Virus Replication* / drug effects

Substances

  • DNA-Binding Proteins
  • Fungal Proteins
  • GAL4 protein, S cerevisiae
  • Macromolecular Substances
  • NS1 protein, minute virus of mice
  • Peptide Fragments
  • Recombinant Fusion Proteins
  • Saccharomyces cerevisiae Proteins
  • Transcription Factors
  • Viral Nonstructural Proteins
  • DNA Helicases