The extrinsic 33-kDa protein of photosystem II (PSII) was intramolecularly cross-linked by a zero-length cross-linker, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The resulting cross-linked 33-kDa protein rebound to urea/NaCl-washed PSII membranes, which stabilized the binding of manganese as effectively as the untreated 33-kDa protein. In contrast, the oxygen evolution was not restored by binding of the cross-linked protein, indicating that the binding and manganese-stabilizing capabilities of the 33-kDa protein are retained but its reactivating ability is lost by intramolecular cross-linking of the protein. From measurements of CD spectra at high temperatures, the secondary structure of the intramolecularly cross-linked 33-kDa protein was found to be stabilized against heat treatment at temperatures 20 degrees C higher than that of the untreated 33-kDa protein, suggesting that structural flexibility of the 33-kDa protein was much decreased by the intramolecular cross-linking. The rigid structure is possibly responsible for the loss of the reactivating ability of the 33-kDa protein, which implies that binding of the 33-kDa protein to PSII is accompanied by a conformational change essential for the reactivation of oxygen evolution. Peptide mapping, N-terminal sequencing, and mass spectroscopic analysis of protease-digested products of the intramolecularly cross-linked 33-kDa protein revealed that cross-linkings occurred between the amino group of Lys48 and the carboxyl group of Glu246, and between the carboxyl group of Glu10 and the amino group of Lys14. These cross-linked amino acid residues are thus closely associated with each other through electrostatic interactions.