Tumor cells have been found in autologous hematopoietic cell transplants used after high-dose chemotherapy. To specifically eliminate contaminating mammary tumor cells during ex vivo expansion of CD34+ hematopoietic progenitor cells, we used recombinant immunotoxins (ITs) directed against cell-surface antigens expressed on mammary carcinoma cells. ITs were expressed from fusion cDNAs combining a single-chain antibody fragment (scFv) directed against the Erb-B2 or epidermal growth factor (EGF) receptors with a truncated Pseudomonas exotoxin A fragment devoid of its cell-binding domain. CD34+ hematopoietic progenitor cells did not express Erb-B2 and EGF receptors as detected by Western blotting. Ex vivo expansion of total hematopoietic cells or of colony-forming cells from CD34+ progenitors in the presence of stem-cell factor (SCF), interleukin-1 (IL-1), IL-3, IL-6, and erythropoietin (Epo) was not affected when ITs were added to the cultures. In contrast, MDA-MB 453 and MCF-7 mammary carcinoma cells were depleted in a dose- and time-dependent manner by more than 3 log in coculture with CD34+ cells over a period of 7 days in the presence of 100 to 1,000 ng/mL of anti-Erb-B2 IT. This included elimination of the subpopulations with regrowth potential. Similarly, addition of either anti-Erb-B2 or anti-EGF receptor ITs to primary breast cancer cells isolated from patients with metastatic disease resulted in elimination of cytokeratin-positive cells in seven of seven samples. ITs are highly efficient and convenient to use for the depletion of mammary tumor cells during ex vivo expansion of hematopoietic progenitor-cell autografts.