Analysis of host range restriction determinants in the rabbit model: comparison of homologous and heterologous rotavirus infections

J Virol. 1998 Mar;72(3):2341-51. doi: 10.1128/JVI.72.3.2341-2351.1998.

Abstract

The main limitation of both the rabbit and mouse models of rotavirus infection is that human rotavirus (HRV) strains do not replicate efficiently in either animal. The identification of individual genes necessary for conferring replication competence in a heterologous host is important to an understanding of the host range restriction of rotavirus infections. We recently reported the identification of the P type of the spike protein VP4 of four lapine rotavirus strains as being P[14]. To determine whether VP4 is involved in host range restriction in rabbits, we evaluated infection in rotavirus antibody-free rabbits inoculated orally with two P[14] HRVs, PA169 (G6) and HAL1166 (G8), and with several other HRV strains and animal rotavirus strains of different P and G types. We also evaluated whether the parental rhesus rotavirus (RRV) (P5B[3], G3) and the derived RRV-HRV reassortant candidate vaccine strains RRV x D (G1), RRV x DS-1 (G2), and RRV x ST3 (G4) would productively infect rabbits. Based on virus shedding, limited replication was observed with the P[14] HRV strains and with the SA11 Cl3 (P[2], G3) and SA11 4F (P6[1], G3) animal rotavirus strains, compared to the homologous ALA strain (P[14], G3). However, even limited infection provided complete protection from rotavirus infection when rabbits were challenged orally 28 days postinoculation (DPI) with 10(3) 50% infective doses of ALA rabbit rotavirus. Other HRVs did not productively infect rabbits and provided no significant protection from challenge, in spite of occasional seroconversion. Simian RRV replicated as efficiently as lapine ALA rotavirus in rabbits and provided complete protection from ALA challenge. Live attenuated RRV reassortant vaccine strains resulted in no, limited, or productive infection of rabbits, but all rabbits were completely protected from heterotypic ALA challenge. The altered replication efficiency of the reassortants in rabbits suggests a role for VP7 in host range restriction. Also, our results suggest that VP4 may be involved in, but is not exclusively responsible for, host range restriction in the rabbit model. The replication efficiency of rotavirus in rabbits also is not controlled by the product of gene 5 (NSP1) alone, since a reassortant rotavirus with ALA gene 5 and all other genes from SA11 was more severely replication restricted than either parental rotavirus strain.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Disease Models, Animal
  • Disease Transmission, Infectious
  • Humans
  • Macaca mulatta
  • RNA, Viral / analysis
  • Rabbits
  • Reassortant Viruses / immunology
  • Rotavirus Infections / immunology
  • Rotavirus Infections / transmission
  • Rotavirus Infections / virology*
  • Vaccines, Attenuated
  • Viral Nonstructural Proteins / genetics
  • Viral Nonstructural Proteins / metabolism
  • Viral Vaccines / immunology
  • Virus Replication
  • Virus Shedding

Substances

  • RNA, Viral
  • Vaccines, Attenuated
  • Viral Nonstructural Proteins
  • Viral Vaccines
  • nsp1 protein, Rotavirus