Transfusion-related acute lung injury (TRALI) is a serious complication of hemotherapy. During blood storage, lipids are generated and released into the plasma. In this study, the role of these lipids in TRALI was investigated using an isolated, perfused rat lung model. Rats were pretreated with endotoxin (LPS) or saline in vivo and the lungs were isolated, ventilated, and perfused with saline, or (a) 5% (vol/ vol) fresh human plasma, (b) plasma from stored blood from the day of isolation (D.0) or from the day of outdate (D.42), (c) lipid extracts from D.42 plasma, or (d) purified lysophosphatidylcholines. Lungs from saline or LPS-pretreated rats perfused with fresh (D.0) plasma showed no pulmonary damage as compared with saline perfused controls. LPS pretreatment/D.42 plasma perfusion caused acute lung injury (ALI) manifested by dramatic changes in both pulmonary artery pressure and edema. Incubation of LPS pre-tx rats with mibefradil, a Ca2+ channel blocker, or WEB 2170, a platelet-activating factor (PAF) receptor antagonist, inhibited ALI caused by D.42 plasma. Lung histology showed neutrophil sequestration without ALI with LPS pretreatment/saline or D.0 plasma perfusion, but ALI with LPS pretreatment/D.42 plasma perfusion, and inhibition of D.42 plasma induced ALI with WEB 2170 or mibefradil. A significant increase in leukotriene E4 was present in LPS-pretreated/D.42 plasma-perfused lungs that was inhibited by WEB 2170. Lastly, significant pulmonary edema was produced when lipid extracts of D.42 plasma or lysophosphatidylcholines were perfused into LPS-pretreated lungs. Lipids caused ALI without vasoconstriction, except at the highest dose employed. In conclusion, both plasma and lipids from stored blood produced pulmonary damage in a model of acute lung injury. TRALI, like the adult respiratory distress syndrome, may be the result of two insults: one derived from stored blood and the other from the clinical condition of the patient.