Paternal uniparental disomy for chromosome 1 revealed by molecular analysis of a patient with pycnodysostosis

Am J Hum Genet. 1998 Apr;62(4):848-54. doi: 10.1086/301795.

Abstract

Molecular analysis of a patient affected by the autosomal recessive skeletal dysplasia, pycnodysostosis (cathepsin K deficiency; MIM 265800), revealed homozygosity for a novel missense mutation (A277V). Since the A277V mutation was carried by the patient's father but not by his mother, who had two normal cathepsin K alleles, paternal uniparental disomy was suspected. Karyotyping of the patient and of both parents was normal, and high-resolution cytogenetic analyses of chromosome 1, to which cathepsin K is mapped, revealed no abnormalities. Evaluation of polymorphic DNA markers spanning chromosome 1 demonstrated that the patient had inherited two paternal chromosome 1 homologues, whereas alleles for markers from other chromosomes were inherited in a Mendelian fashion. The patient was homoallelic for informative markers mapping near the chromosome 1 centromere, but he was heteroallelic for markers near both telomeres, establishing that the paternal uniparental disomy with partial isodisomy was caused by a meiosis II nondisjunction event. Phenotypically, the patient had normal birth height and weight, had normal psychomotor development at age 7 years, and had only the usual features of pycnodysostosis. This patient represents the first case of paternal uniparental disomy of chromosome 1 and provides conclusive evidence that paternally derived genes on human chromosome 1 are not imprinted.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Bone Diseases, Developmental / genetics*
  • Cathepsin K
  • Cathepsins / deficiency*
  • Cathepsins / genetics*
  • Child, Preschool
  • Chromosome Mapping
  • Chromosomes, Human, Pair 1*
  • DNA Mutational Analysis
  • Female
  • Humans
  • Male
  • Mutation*

Substances

  • Cathepsins
  • CTSK protein, human
  • Cathepsin K