The synthesis, biological activity, and molecular modeling of a novel series of substituted 1-(3-pyridylcarbamoyl)indolines are reported. These compounds are isosteres of the previously published indole urea 1 (SB-206553) and illustrate the use of aromatic disubstitution as a replacement for fused five-membered rings in the context of 5-HT2C/2B receptor antagonists. By targeting a region of space previously identified as sterically allowed at the 5-HT2C receptor but disallowed at the 5-HT2A receptor, we have identified a number of compounds which are the most potent and selective 5-HT2C/2B receptor antagonists yet reported. 46 (SB-221284) was selected on the basis of its overall biological profile for further evaluation as a novel, potential nonsedating anxiolytic agent. A CoMFA analysis of these compounds produced a model with good predictive value and in addition good qualitative agreement with both our 5-HT2C receptor model and our proposed binding mode for this class of ligands within that model.