Erythrocyte ascorbate recycling: antioxidant effects in blood

Free Radic Biol Med. 1998 Mar 15;24(5):789-97. doi: 10.1016/s0891-5849(97)00351-1.

Abstract

Ascorbic acid is an important antioxidant in human plasma, but requires efficient recycling from its oxidized forms to avoid irreversible loss. Human erythrocytes prevented oxidation of ascorbate in autologous plasma, an effect that required recycling of ascorbate within the cells. Erythrocytes had a high capacity to take up dehydroascorbate, the two-electron oxidized product of ascorbate, and to reduce it to ascorbate. Uptake and conversion of dehydroascorbate to ascorbate was saturable, was half-maximal at 400 microM dehydroascorbate, and achieved a maximal intracellular ascorbate concentration of 1.5 mM. In the presence of 100 microM dehydroascorbate, erythrocytes had the capacity to regenerate a 35 microM ascorbate concentration in blood every 3 min. Ascorbate recycling from DHA required intracellular GSH. Depletion of erythrocyte GSH by more than 50% with diamide did not acutely affect the cellular ascorbate content, but did impair the subsequent ability of GSH-depleted cells to recycle dehydroascorbate to ascorbate. Whereas erythrocyte ascorbate recycling was coupled to GSH, an overwhelming extracellular oxidant stress depleted both ascorbate and alpha-tocopherol before the GSH content of cells fell appreciably. Recycled ascorbate was released from cells into plasma, but at a rate less than one tenth that of dehydroascorbate uptake and conversion to ascorbate. Nonetheless, ascorbate released from cells protected endogenous alpha-tocopherol in human LDL from oxidation by a water soluble free radical initiator. These results suggests that recycling of ascorbate in erythrocytes helps to maintain the antioxidant reserve of whole blood.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antioxidants / metabolism*
  • Ascorbic Acid / blood*
  • Biological Transport / physiology
  • Erythrocytes / metabolism*
  • Free Radicals
  • Glutathione / blood*
  • Humans
  • Lipoproteins, LDL / blood
  • Oxidative Stress / physiology*
  • Reference Values
  • Vitamin E / blood*

Substances

  • Antioxidants
  • Free Radicals
  • Lipoproteins, LDL
  • Vitamin E
  • Glutathione
  • Ascorbic Acid