Effect of eye movements on the magnitude of functional magnetic resonance imaging responses in extrastriate cortex during visual motion perception

Exp Brain Res. 1998 Apr;119(4):409-14. doi: 10.1007/s002210050356.

Abstract

We have studied the effects of pursuit eye movements on the functional magnetic resonance imaging (fMRI) responses in extrastriate visual areas during visual motion perception. Echoplanar imaging of 10-12 image planes through visual cortex was acquired in nine subjects while they viewed sequences of random-dot motion. Images obtained during stimulation periods were compared with baseline images, where subjects viewed a blank field. In a subsidiary experiment, responses to moving dots, viewed under conditions of fixation or pursuit, were compared with those evoked by static dots. Eye movements were recorded with MR-compatible electro-oculographic (EOG) electrodes. Our findings show an enhanced level of activation (as indexed by blood-oxygen level-dependent contrast) during pursuit compared with fixation in two extrastriate areas. The results support earlier findings on a motion-specific area in lateral occipitotemporal cortex (human V5). They also point to a further site of activation in a region approximately 12 mm dorsal of V5. The fMRI response in V5 during pursuit is significantly enhanced. This increased response may represent additional processing demands required for the control of eye movements.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Blinking / physiology
  • Electrooculography
  • Eye Movements / physiology*
  • Female
  • Fixation, Ocular
  • Functional Laterality / physiology
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Motion Perception / physiology*
  • Photic Stimulation
  • Visual Cortex / physiology*