Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability

Cancer Res. 1998 Aug 1;58(15):3455-60.

Abstract

Recent studies have demonstrated the presence of microsatellite instability (MSI) in tumors from patients with hereditary nonpolyposis colon cancer and in a subset of patients with sporadic colorectal cancer (CRC). In sporadic CRC, three tumor phenotypes have been defined: microsatellite stable (MSS), low-frequency MSI, and high-frequency MSI (MSI-H). Although defective mismatch repair, consisting primarily of alterations in hMSH2 and hMLH1, is believed to be responsible for the MSI phenotype in the majority of patients with hereditary nonpolyposis colon cancer, the genetic defect responsible for this phenotype in sporadic CRC has yet to be clearly delineated. Somatic or germ-line alterations in these two genes have been identified in only a minority of these cases. Analysis of the protein expression patterns of hMSH2 and hMLH1 in unselected CRC, however, suggests that alterations in hMLH1 may account for a majority of the MSI-H cases. In an effort to explore the underlying molecular basis for these findings, we have examined the methylation status of the presumptive hMLHI promoter region in 31 tumors that vary in regard to their MSI status (MSI-H or MSS), their hMLH1 protein expression (MLH- or MLH+), and their gene mutation (Mut+ or Mut-) status. Hypermethylation of the hMLH1 promoter occurred in all 13 MSI-H/ MLH- tumors that did not have a detectable mutation within the hMLH1 gene. Of those MSI-H tumors containing germ-line or somatic alterations in hMLH1 (n = 7, including 3 frameshift, 1 nonsense, 2 missense mutations, and 1 tumor containing multiple mutations: missense, splice-site alteration, and a frameshift), four had a normal methylation pattern, whereas three others demonstrated hypermethylation of the hMLH1 promoter region. Two of these cases had a missense alteration, the other a frameshift alteration. The single MSI-H/Mut+ tumor that had normal hMLH1 and hMSH2 expression, as well as 9 of the 10 MSS cases, lacked methylation of the hMLH1 promoter. Hypermethylation of the hMSH2 promoter was not observed for any of the cases. These results suggest that hypermethylation of the hMLH1 promoter may be the principal mechanism of gene inactivation in sporadic CRC characterized by widespread MSI.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins
  • Colonic Neoplasms / genetics*
  • Colonic Neoplasms / metabolism
  • DNA Methylation*
  • DNA, Neoplasm / genetics
  • DNA, Neoplasm / metabolism
  • DNA-Binding Proteins*
  • Germ-Line Mutation
  • Humans
  • Microsatellite Repeats*
  • MutL Protein Homolog 1
  • MutS Homolog 2 Protein
  • Neoplasm Proteins / genetics*
  • Nuclear Proteins
  • Polymerase Chain Reaction
  • Promoter Regions, Genetic / physiology*
  • Proto-Oncogene Proteins / genetics

Substances

  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins
  • DNA, Neoplasm
  • DNA-Binding Proteins
  • MLH1 protein, human
  • Neoplasm Proteins
  • Nuclear Proteins
  • Proto-Oncogene Proteins
  • MSH2 protein, human
  • MutL Protein Homolog 1
  • MutS Homolog 2 Protein