Three photosynthetic complexes, light-harvesting complex 2 (LH2), light-harvesting complex 1 (LH1), and the reaction centre-light-harvesting complex 1 photounit (RC-LH1), were purified from a single species of a purple bacterium, Rhodobacter sphaeroides, and reconstituted into two-dimensional (2-D) crystals. Vesicular 2-D crystals of LH1 and RC-LH1 were imaged in negative stain and projection maps at 25 A resolution were produced. The rings formed by LH1 have approximately the same mean diameter as the LH1 rings from Rhodospirillum rubrum ( approximately 90 A) and therefore are likely to be composed of 15 to 17 alphabeta subunits. In the projection map calculated from the RC-LH1 2-D crystals, the reaction centre is represented by an additional density in the centre of the ring formed by the LH1 subunits. The marked improvement of shape and fine structure after a rotational pre-alignment of the RC-LH1 unit cells before averaging strongly suggests that the RC is not in a unique orientation within the LH1 rings. Tubular crystals of LH2 showed a high degree of order and allowed calculation of a projection map at 6 A resolution from glucose-embedded specimens. The projection structure shows a ring of nine alphabeta subunits. Variation of the alpha-helical projection densities suggests that the 9-fold symmetry axis is tilted with respect to the membrane normal.
Copyright 1998 Academic Press.