The purpose of this study was to define the length of topotecan (TPT) i.v. infusion necessary to attain a cytotoxic exposure for medulloblastoma cells throughout the neuraxis. In vitro studies of human medulloblastoma cell lines (Daoy, SJ-Med3) were used to estimate the length and extent of TPT systemic exposure associated with inhibition of tumor cell growth or the exposure duration threshold (EDT). We evaluated TPT systemic and cerebrospinal fluid (CSF) disposition in six male rhesus monkeys (8-12 kg) that received TPT 2.0 mg/m2 i.v. as a 30-min or 4-h infusion. Plasma and CSF samples were assayed for TPT lactone by high-performance liquid chromatography, and the CSF exposures were compared with the estimated EDT. Results of the in vitro studies defined an EDT as a TPT lactone concentration of > 1 ng/ml for 8 h (IC99) daily for 5 days. The mean +/- SD for systemic clearance (CL(SYS)), penetration into fourth ventricle (%CSF(4th)), and penetration into lumbar space (%CSF(LUM)) were similar for the 30-min and the 4-h infusions. At a TPT lactone systemic exposure (AUC(PL)) of 56.7 +/- 19.9 ng/ml x h, time above 1 ng/ml in the fourth ventricle was 1.4-fold greater for a 4-h infusion compared with a 30-min infusion. At a TPT lactone AUC(PL) of 140 ng/ml x h, the 4-h infusion achieved the desired TPT exposure throughout the neuraxis (lateral and fourth ventricles and lumbar space), whereas the 30-min infusion failed to achieve it in the lumbar space. In conclusion, prolonging TPT i.v. infusion from 30-min to 4-h at a targeted AUC(PL) achieves the EDT throughout the neuraxis and represents an alternative method of TPT administration that will be tested prospectively in patients with high-risk medulloblastoma.